If it ain't broke, don't fix it: evaluating the effect of increased recombination on response to selection for wheat breeding

Author:

Taagen Ella1ORCID,Jordan Katherine23ORCID,Akhunov Eduard3ORCID,Sorrells Mark E1,Jannink Jean-Luc14ORCID

Affiliation:

1. Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University , Ithaca NY 14853, USA

2. USDA-ARS, Hard Winter Wheat Genetics Research Unit , Manhattan, KS 66502, USA

3. Department of Plant Pathology, Kansas State University , Manhattan, KS 66502, USA

4. USDA-ARS, R.W. Holley Center, Cornell University , Ithaca, NY 14853, USA

Abstract

Abstract Meiotic recombination is a source of allelic diversity, but the low frequency and biased distribution of crossovers that occur during meiosis limits the genetic variation available to plant breeders. Simulation studies previously identified that increased recombination frequency can retain more genetic variation and drive greater genetic gains than wildtype recombination. Our study was motivated by the need to define desirable recombination intervals in regions of the genome with fewer crossovers. We hypothesized that deleterious variants, which can negatively impact phenotypes and occur at higher frequencies in low recombining regions where they are linked in repulsion with favorable loci, may offer a signal for positioning shifts of recombination distributions. Genomic selection breeding simulation models based on empirical wheat data were developed to evaluate increased recombination frequency and changing recombination distribution on response to selection. Comparing high and low values for a range of simulation parameters identified that few combinations retained greater genetic variation and fewer still achieved higher genetic gain than wildtype. More recombination was associated with loss of genomic prediction accuracy, which outweighed the benefits of disrupting repulsion linkages. Irrespective of recombination frequency or distribution and deleterious variant annotation, enhanced response to selection under increased recombination required polygenic trait architecture, high heritability, an initial scenario of more repulsion than coupling linkages, and greater than 6 cycles of genomic selection. Altogether, the outcomes of this research discourage a controlled recombination approach to genomic selection in wheat as a more efficient path to retaining genetic variation and increasing genetic gains compared with existing breeding methods.

Funder

National Institute of Food and Agriculture

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Meiosis: Dances Between Homologs;Annual Review of Genetics;2023-11-27

2. Partial cytological diploidization of neoautotetraploid meiosis by induced cross-over rate reduction;Proceedings of the National Academy of Sciences;2023-08-07

3. Exploring impact of recombination landscapes on breeding outcomes;Proceedings of the National Academy of Sciences;2023-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3