Exploring impact of recombination landscapes on breeding outcomes

Author:

Epstein Ruth1,Sajai Nikita1,Zelkowski Mateusz1,Zhou Adele1,Robbins Kelly R.1,Pawlowski Wojciech P.1

Affiliation:

1. School of Integrative Plant Science, Cornell University, Ithaca, NY 14853

Abstract

Plant breeding relies on crossing-over to create novel combinations of alleles needed to confer increased productivity and other desired traits in new varieties. However, crossover (CO) events are rare, as usually only one or two of them occur per chromosome in each generation. In addition, COs are not distributed evenly along chromosomes. In plants with large genomes, which includes most crops, COs are predominantly formed close to chromosome ends, and there are few COs in the large chromosome swaths around centromeres. This situation has created interest in engineering CO landscape to improve breeding efficiency. Methods have been developed to boost COs globally by altering expression of anti-recombination genes and increase CO rates in certain chromosome parts by changing DNA methylation patterns. In addition, progress is being made to devise methods to target COs to specific chromosome sites. We review these approaches and examine using simulations whether they indeed have the capacity to improve efficiency of breeding programs. We found that the current methods to alter CO landscape can produce enough benefits for breeding programs to be attractive. They can increase genetic gain in recurrent selection and significantly decrease linkage drag around donor loci in schemes to introgress a trait from unimproved germplasm to an elite line. Methods to target COs to specific genome sites were also found to provide advantage when introgressing a chromosome segment harboring a desirable quantitative trait loci. We recommend avenues for future research to facilitate implementation of these methods in breeding programs.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Genome of Raphanus sativus L. Bakdal, an elite line of large cultivated Korean radish;Frontiers in Genetics;2024-01-18

2. On the estimation of genome-average recombination rates;2023-09-01

3. Harnessing crop diversity;Proceedings of the National Academy of Sciences;2023-03-27

4. Genomic Innovations for Improving Crops: The CRISPR Way;Transformation of Agri-Food Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3