Affiliation:
1. Institute of Science and Technology Austria , Am Campus 1, Klosterneuburg 3400 , Austria
Abstract
Abstract
The regulatory architecture of gene expression is known to differ substantially between sexes in Drosophila, but most studies performed so far used whole-body data and only single crosses, which may have limited their scope to detect patterns that are robust across tissues and biological replicates. Here, we use allele-specific gene expression of parental and reciprocal hybrid crosses between 6 Drosophila melanogaster inbred lines to quantify cis- and trans-regulatory variation in heads and gonads of both sexes separately across 3 replicate crosses. Our results suggest that female and male heads, as well as ovaries, have a similar regulatory architecture. On the other hand, testes display more and substantially different cis-regulatory effects, suggesting that sex differences in the regulatory architecture that have been previously observed may largely derive from testis-specific effects. We also examine the difference in cis-regulatory variation of genes across different levels of sex bias in gonads and heads. Consistent with the idea that intersex correlations constrain expression and can lead to sexual antagonism, we find more cis variation in unbiased and moderately biased genes in heads. In ovaries, reduced cis variation is observed for male-biased genes, suggesting that cis variants acting on these genes in males do not lead to changes in ovary expression. Finally, we examine the dominance patterns of gene expression and find that sex- and tissue-specific patterns of inheritance as well as trans-regulatory variation are highly variable across biological crosses, although these were performed in highly controlled experimental conditions. This highlights the importance of using various genetic backgrounds to infer generalizable patterns.
Funder
European Union’s Horizon 2020
Marie Skłodowska-Curie Grant
Publisher
Oxford University Press (OUP)
Subject
Genetics (clinical),Genetics,Molecular Biology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献