Atomically dispersed Ir/α-MoC catalyst with high metal loading and thermal stability for water-promoted hydrogenation reaction

Author:

Li Siwei1,Cao Ruochen1,Xu Mingquan2,Deng Yuchen1,Lin Lili1,Yao Siyu1,Liang Xuan1,Peng Mi1,Gao Zirui1,Ge Yuzhen1,Liu Jin-Xun3,Li Wei-Xue3,Zhou Wu24,Ma Ding1ORCID

Affiliation:

1. Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing 100871, China

2. School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China

3. School of Chemistry and Materials Science, CAS Excellence Center for Nanoscience, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, University of Science and Technology of China, Hefei 230026, China

4. CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

ABSTRACT Synthesis of atomically dispersed catalysts with high metal loading and thermal stability is challenging but particularly valuable for industrial application in heterogeneous catalysis. Here, we report a facile synthesis of a thermally stable atomically dispersed Ir/α-MoC catalyst with metal loading as high as 4 wt%, an unusually high value for carbide supported metal catalysts. The strong interaction between Ir and the α-MoC substrate enables high dispersion of Ir on the α-MoC surface, and modulates the electronic structure of the supported Ir species. Using quinoline hydrogenation as a model reaction, we demonstrate that this atomically dispersed Ir/α-MoC catalyst exhibits remarkable reactivity, selectivity and stability, for which the presence of high-density isolated Ir atoms is the key to achieving high metal-normalized activity and mass-specific activity. We also show that the water-promoted quinoline hydrogenation mechanism is preferred over the Ir/α-MoC, and contributes to high selectivity towards 1,2,3,4-tetrahydroquinoline. The present work demonstrates a new strategy in constructing a high-loading atomically dispersed catalyst for the hydrogenation reaction.

Funder

National Key Research and Development of China

National Natural Science Foundation of China

Beijing Outstanding Young Scientist Program

Key Research Program of Frontier Sciences, Chinese Academy of Sciences

Fundamental Research Funds for the Central Universities

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3