Identifying Highly Active and Selective Cobalt X‐Ides for Electrocatalytic Hydrogenation of Quinoline

Author:

Du Han1,Wang Tianyi2,Li Meng13,Yin Zitong1,Lv Ransheng1,Zhang Muzhe1,Wu Xiangrui1,Tang Yawen1,Li Hao2,Fu Gengtao1ORCID

Affiliation:

1. Jiangsu Key Laboratory of New Power Batteries Jiangsu Collaborative Innovation Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China

2. Advanced Institute for Materials Research (WPI‐AIMR) Tohoku University Sendai 980–8577 Japan

3. School of Chemistry and Chemical Engineering Southeast University Nanjing 210096 China

Abstract

AbstractEarth‐abundant Co X‐ides are emerging as promising catalysts for the electrocatalytic hydrogenation of quinoline (ECHQ), yet challenging due to the limited fundamental understanding of ECHQ mechanism on Co X‐ides. This work identifies the catalytic performance differences of Co X‐ides in ECHQ and provides significant insights into the catalytic mechanism of ECHQ. Among selected Co X‐ides, the Co3O4 presents the best ECHQ performance with a high conversion of 98.2% and 100% selectivity at ambient conditions. The Co3O4 sites present a higher proportion of 2‐coordinated hydrogen‐bonded water at the interface than other Co X‐ides at a low negative potential, which enhances the kinetics of subsequent water dissociation to produce H*. An ideal 1,4/2,3‐H* addition pathway on Co3O4 surface with a spontaneous desorption of 1,2,3,4‐tetrahydroquinoline is demonstrated through operando tracing and theoretical calculations. In comparison, the Co9S8 sites display the lowest ECHQ performance due to the high thermodynamic barrier in the H* formation step, which suppresses subsequent hydrogenation; while the ECHQ on Co(OH)F and CoP sites undergo the 1,2,3,4‐ and 4,3/1,2‐H* addition pathway respectively with the high desorption barriers and thus low conversion of quinoline. Moreover, the Co3O4 presents a wide substrate scope and allows excellent conversion of other quinoline derivatives and N‐heterocyclic substrates.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3