High Transcriptional Error Rates Vary as a Function of Gene Expression Level

Author:

Meer Kendra M12ORCID,Nelson Paul G1ORCID,Xiong Kun34ORCID,Masel Joanna1ORCID

Affiliation:

1. Department of Ecology & Evolutionary Biology, University of Arizona

2. Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO

3. Department of Molecular & Cellular Biology, University of Arizona

4. Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT

Abstract

Abstract Errors in gene transcription can be costly, and organisms have evolved to prevent their occurrence or mitigate their costs. The simplest interpretation of the drift barrier hypothesis suggests that species with larger population sizes would have lower transcriptional error rates. However, Escherichia coli seems to have a higher transcriptional error rate than species with lower effective population sizes, for example Saccharomyces cerevisiae. This could be explained if selection in E. coli were strong enough to maintain adaptations that mitigate the consequences of transcriptional errors through robustness, on a gene by gene basis, obviating the need for low transcriptional error rates and associated costs of global proofreading. Here, we note that if selection is powerful enough to evolve local robustness, selection should also be powerful enough to locally reduce error rates. We therefore predict that transcriptional error rates will be lower in highly abundant proteins on which selection is strongest. However, we only expect this result when error rates are high enough to significantly impact fitness. As expected, we find such a relationship between expression and transcriptional error rate for non-C→U errors in E. coli (especially G→A), but not in S. cerevisiae. We do not find this pattern for C→U changes in E. coli, presumably because most deamination events occurred during sample preparation, but do for C→U changes in S. cerevisiae, supporting the interpretation that C→U error rates estimated with an improved protocol, and which occur at rates comparable with E. coli non-C→U errors, are biological.

Funder

John Templeton Foundation

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3