Evolutionary conservation of the fidelity of transcription

Author:

Chung Claire,Verheijen Bert M.,Navapanich Zoe,McGann Eric G.,Shemtov Sarah,Lai Guan-Ju,Arora Payal,Towheed AtifORCID,Haroon SuraiyaORCID,Holczbauer Agnes,Chang SharonORCID,Manojlovic ZarkoORCID,Simpson Stephen,Thomas Kelley W.ORCID,Kaplan CraigORCID,van Hasselt Peter,Timmers MarcORCID,Erie Dorothy,Chen LinORCID,Gout Jean-Franćois,Vermulst MarcORCID

Abstract

AbstractAccurate transcription is required for the faithful expression of genetic information. However, relatively little is known about the molecular mechanisms that control the fidelity of transcription, or the conservation of these mechanisms across the tree of life. To address these issues, we measured the error rate of transcription in five organisms of increasing complexity and found that the error rate of RNA polymerase II ranges from 2.9 × 10−6 ± 1.9 × 10−7/bp in yeast to 4.0 × 10−6 ± 5.2 × 10−7/bp in worms, 5.69 × 10−6 ± 8.2 × 10−7/bp in flies, 4.9 × 10−6 ± 3.6 × 10−7/bp in mouse cells and 4.7 × 10−6 ± 9.9 × 10−8/bp in human cells. These error rates were modified by various factors including aging, mutagen treatment and gene modifications. For example, the deletion or modification of several related genes increased the error rate substantially in both yeast and human cells. This research highlights the evolutionary conservation of factors that control the fidelity of transcription. Additionally, these experiments provide a reasonable estimate of the error rate of transcription in human cells and identify disease alleles in a subunit of RNA polymerase II that display error-prone transcription. Finally, we provide evidence suggesting that the error rate and spectrum of transcription co-evolved with our genetic code.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3