Genome-wide-association study and transcriptome analysis reveal the genetic basis controlling the formation of leaf wax in Brassica napus

Author:

Long Zhengbiao1,Tu Mengxin1,Xu Ying1,Pak Haksong1,Zhu Yang1ORCID,Dong Jie1ORCID,Lu Yunhai1,Jiang Lixi1ORCID

Affiliation:

1. Institute of Crop Science, Zhejiang University , Yu-Hang-Tang Road 866, 310058, Hangzhou , China

Abstract

Abstract Cuticular wax protects plants from various biotic and abiotic stresses. However, the genetic network of wax biosynthesis and the environmental factors influencing leaf wax production in rapeseed (Brassica napus) remains unclear. Here, we demonstrated the role of leaf wax in the resistance to Sclerotinia infection in rapeseed. We found that leaves grown under high light intensity had higher expression of genes involved in wax biosynthesis, and produced more wax on the leaf surface, compared with those grown under low light conditions. Genome-wide association study (GWAS) identified 89 single nucleotide polymorphisms significantly associated with leaf wax coverage. A cross-analysis between GWAS and differentially expressed genes (DEGs) in the leaf epidermis of the accessions with contrasting differences in wax content revealed 17 candidate genes that control this variation in rapeseed. Selective sweep analysis combined with DEG analysis unveiled 510 candidate genes with significant selective signatures. From the candidate genes, we selected BnaA02.LOX4, a putative lipoxygenase, and BnaCnn.CER1, BnaA02.CER3, BnaC02.CER3, and BnaA01.CER4 (ECERIFERUM1–4) that were putatively responsible for wax biosynthesis, to analyse the allelic forms and haplotypes corresponding to high or low leaf wax coverage. These data enrich our knowledge about wax formation, and provide a gene pool for breeding an ideal leaf wax content in rapeseed.

Funder

Natural Science Foundation of China

Key Science and Technology Project of Zhejiang Province

Jiangsu Collaborative Innovation Centre for Modern Crop Production

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3