Facilitating transcriptional transitions: an overview of chromatin bivalency in plants

Author:

Faivre Léa1ORCID,Schubert Daniel1ORCID

Affiliation:

1. Epigenetics of Plants, Freie Universität Berlin , Berlin , Germany

Abstract

AbstractChromatin is an essential contributor to the regulation of transcription. The two histone post-translational modifications H3K4me3 and H3K27me3 act as an activator and repressor of gene expression, respectively, and are usually described as being mutually exclusive. However, recent work revealed that both marks might co-exist at several loci, forming a distinctive chromatin state called bivalency. While this state has been detected on a handful of genes involved in plant development and stress responses, its role in the regulation of transcription remains unclear. In an effort to shed more light on the putative function(s) of bivalency in plants, this review details the potential players involved in its setting and reading, and explores how this chromatin state might contribute to the control of gene expression. We propose that bivalency maintains transcriptional plasticity by facilitating transitions between a repressed and an active state and/or by preventing irreversible silencing of its targets. We also highlight recently developed techniques that could be used for further investigating bivalency.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3