Redox regulation of gene expression: proteomics reveals multiple previously undescribed redox-sensitive cysteines in transcription complexes and chromatin modifiers

Author:

Dard Avilien12ORCID,Van Breusegem Frank12ORCID,Mhamdi Amna12ORCID

Affiliation:

1. Department of Plant Biotechnology and Bioinformatics, Ghent University , 9052 Gent , Belgium

2. Center for Plant Systems Biology, VIB , 9052 Gent , Belgium

Abstract

Abstract Redox signalling is crucial for regulating plant development and adaptation to environmental changes. Proteins with redox-sensitive cysteines can sense oxidative stress and modulate their functions. Recent proteomics efforts have comprehensively mapped the proteins targeted by oxidative modifications. The nucleus, the epicentre of transcriptional reprogramming, contains a large number of proteins that control gene expression. Specific redox-sensitive transcription factors have long been recognized as key players in decoding redox signals in the nucleus and thus in regulating transcriptional responses. Consequently, the redox regulation of the nuclear transcription machinery and its cofactors has received less attention. In this review, we screened proteomic datasets for redox-sensitive cysteines on proteins of the core transcription complexes and chromatin modifiers in Arabidopsis thaliana. Our analysis indicates that redox regulation affects every step of gene transcription, from initiation to elongation and termination. We report previously undescribed redox-sensitive subunits in transcription complexes and discuss the emerging challenges in unravelling the landscape of redox-regulated processes involved in nuclear gene transcription.

Funder

Research Foundation Flanders

NUCLEOX

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3