New insights into the regulation of plant metabolism by O-acetylserine: sulfate and beyond

Author:

Apodiakou Anastasia1,Hoefgen Rainer1ORCID

Affiliation:

1. Max Planck Institute of Molecular Plant Physiology , Am Mühlenberg 1, D-14476 Potsdam-Golm , Germany

Abstract

Abstract Under conditions of sulfur deprivation, O-acetylserine (OAS) accumulates, which leads to the induction of a common set of six genes, called OAS cluster genes. These genes are induced not only under sulfur deprivation, but also under other conditions where OAS accumulates, such as shift to darkness and stress conditions leading to reactive oxygen species (ROS) or methyl-jasmonate accumulation. Using the OAS cluster genes as a query in ATTED-II, a co-expression network is derived stably spanning several hundred conditions. This allowed us not only to describe the downstream function of the OAS cluster genes but also to score for functions of the members of the co-regulated co-expression network and hence the effects of the OAS signal on the sulfate assimilation pathway and co-regulated pathways. Further, we summarized existing knowledge on the regulation of the OAS cluster and the co-expressed genes. We revealed that the known sulfate deprivation-related transcription factor EIL3/SLIM1 exhibits a prominent role, as most genes are subject to regulation by this transcription factor. The role of other transcription factors in response to OAS awaits further investigation.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3