PoWRKY71 is involved in Paeonia ostii resistance to drought stress by directly regulating light-harvesting chlorophyll a/b-binding 151 gene

Author:

Luan Yuting1,Chen Zijie1,Fang Ziwen1,Huang Xingqi2,Zhao Daqiu1,Tao Jun13

Affiliation:

1. Yangzhou University College of Horticulture and Landscape Architecture, , Yangzhou 225009 , China

2. Purdue University Department of Biochemistry, , West Lafayette, IN 47907 , USA

3. Yangzhou University Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, , Yangzhou 225009 , China

Abstract

Abstract Although the functions of WRKY transcription factors in drought resistance are well known, their regulatory mechanisms in response to drought by stabilising photosynthesis remain unclear. Here, a differentially expressed PoWRKY71 gene that was highly expressed in drought-treated Paeonia ostii leaves was identified through transcriptome analysis. PoWRKY71 positively responded to drought stress with significantly enhanced expression patterns and overexpressing PoWRKY71 in tobacco greatly improved plant tolerance to drought stress, whereas silencing PoWRKY71 in P. ostii resulted in a drought-intolerant phenotype. Furthermore, lower chlorophyll contents, photosynthesis, and inhibited expression of photosynthesis-related light-harvesting chlorophyll a/b-binding 151 (CAB151) gene were found in PoWRKY71-silenced P. ostii. Meanwhile, a homologous system indicated that drought treatment increased PoCAB151 promoter activity. Interactive assays revealed that PoWRKY71 directly bound on the W-box element of PoCAB151 promoter and activated its transcription. In addition, PoCAB151 overexpressing plants demonstrated increased drought tolerance, together with significantly higher chlorophyll contents and photosynthesis, whereas these indices were dramatically lower in PoCAB151-silenced P. ostii. The above results indicated that PoWRKY71 activated the expression of PoCAB151, thus stabilising photosynthesis via regulating chloroplast homeostasis and chlorophyll content in P. ostii under drought stress. This study reveals a novel drought-resistance mechanism in plants and provides a feasible strategy for improving plant drought resistance via stabilising photosynthesis.

Funder

Forest and Grass Germplasm Resource Bank of Jiangsu Province, Modern Agriculture (Flower) Industrial Technology System of Jiangsu Province

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3