Role of S-Equol, Indoxyl Sulfate, and Trimethylamine N-Oxide on Vascular Function

Author:

Matsumoto Takayuki1ORCID,Kojima Mihoka1,Takayanagi Keisuke1,Taguchi Kumiko1,Kobayashi Tsuneo1

Affiliation:

1. Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Tokyo, Japan

Abstract

Abstract Gut microbiota have been emerging as important contributors to the regulation of host homeostasis. Accordingly, several substances converted by gut microbiota can have beneficial or adverse effects on human health. Among them, S-equol, which is produced from the isoflavone daidzein in the human and animal gut by certain microbiota, exerts estrogenic and antioxidant activities. Indoxyl sulfate, which is metabolized in the liver from indole converted from dietary tryptophan by bacterial tryptophanases in the colon, is known as a protein-bound uremic toxin. Trimethylamine N-oxide, which is generated via the oxidization of gut microbiota-derived trimethylamine by hepatic flavin monooxygenases, is known as an accelerator of atherosclerosis. The aforementioned gut-derived substances could be potential regulators of systematic tissue/organ function, including the vascular system. Macro- and microvascular complications of cardiovascular and metabolic diseases, including atherosclerosis, hypertension, and diabetes, occur systemically and represent the principal cause of morbidity and mortality. Vascular endothelial and smooth muscle dysfunction play pivotal roles in the development and progression of vasculopathies. We herein review the link between the aforementioned gut-derived substances and endothelial and vascular smooth muscle cell function. This information will provide a conceptual framework that would allow the development of novel preventive and/or therapeutic approaches against vasculopathies.

Funder

JSPS KAKENHI

Publisher

Oxford University Press (OUP)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3