Effect of Elevated Ambient Temperature on Simulator-Derived Oscillometric Blood Pressure Measurement

Author:

Ringrose Jennifer S12,Kennedy Michael D3,Kassam Jalisa4,Mouhammed Omar5,Sridar Sangita16,Kenwell Zoltan3,Padwal Raj12ORCID

Affiliation:

1. Department of Medicine, University of Alberta, Edmonton, Alberta, Canada

2. Women and Children’s Health Research Institute, Edmonton, Alberta, Canada

3. Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, Alberta, Canada

4. Faculty of Science, Oglethorpe University, Atlanta, Georgia, United States of America

5. Faculty of Science, University of Alberta, Alberta, Canada

6. mmHg Inc., University of Alberta, Edmonton, Alberta, Canada

Abstract

Abstract BACKGROUND Oscillometric blood pressure (BP) devices are typically labeled for use up to 40 °C. Many geographic regions have ambient temperatures exceeding 40 °C. We assessed the effect of increased ambient temperature (40–55 °C) on simulator-derived oscillometric BP measurement. METHODS Three Omron BP769CAN devices, 3 A&D Medical UA-651BLE devices, and accompanying cuffs were used. A custom heat chamber heated each device to the specified temperature. A noninvasive BP simulator was used to take 3 measurements with each device at differing temperatures (22, 40, 45, 50, and 55 °C) and BP thresholds: 80/50, 100/60, 120/80, 140/90, 160/110, and 180/130 mm Hg. Using each device as its own control (22 °C), we determined the relative differences in mean BP for each device at each temperature and BP setting, assessed graphical trends with increasing temperature, and examined variability. RESULTS Graphical trends of mean simulator-subtracted BP differences from room temperature showed no discernable pattern, with differences clustered around zero. Overall mean difference in BP (combined elevated temperatures minus room temperature) was −0.8 ± 2.1 (systolic ± SD)/1.2 ± 3.5 (diastolic ± SD) mm Hg for the A&D device and 0.2 ± 0.4 (systolic ± SD)/−0.1 ± 0.1 (diastolic ± SD) mm Hg for the Omron. All individual elevated temperature differences (elevated temperature minus room temperature) except A&D diastolic BP at 50 °C were within 5 mm Hg. CONCLUSIONS In this simulator-based study assessing within-device differences, higher ambient temperatures resulted in oscillometric BP measurements that were comparable to those performed at room temperature.

Publisher

Oxford University Press (OUP)

Subject

Internal Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sources of automatic office blood pressure measurement error: a systematic review;Physiological Measurement;2022-09-05

2. From the Editor-in-Chief: Issue at a Glance;American Journal of Hypertension;2021-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3