Mathematical analysis for Brownian motion of nonlinear thermal bioconvective stagnation point flow in a nanofluid using DTM and RKF method

Author:

Mondal Surya Kanta1,Pal Dulal2

Affiliation:

1. Department of Mathematics, Abhedananda Mahavidyalaya, Sainthia 731234, West Bengal, India

2. Department of Mathematics, Visva-Bharati University, Institute of Science, Santiniketan 731235, West Bengal, India

Abstract

Abstract In the present paper, bioconvective stagnation point flow of nanofluid containing gyrotactic microorganisms over a nonlinearly stretching sheet embedded in a porous medium is considered. The scaling group transformation method is introduced to obtain the similarity transformation to convert the governing partial differential equations to a set of ordinary differential equations. The reduced governing nonlinear differential equations are then solved numerically with Runge–Kutta–Fehlberg method. Differential transform method is employed to justify the results obtained by the numerical method. It is found that both the results matched nicely. It is noticed that the density of motile microorganism distribution grows high with an increase in the values of the bioconvection Peclet number. Further, the rate of heat transfer and the rate of mass transfer increase rapidly with an increment in the thermophoresis parameter, heat source parameter, chemical reaction parameter, and Brownian motion parameter, respectively. This work is relevant to engineering and biotechnological applications, such as in the design of bioconjugates and mass transfer enhancement of microfluidics.

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modelling and Simulation,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3