Minimize makespan of permutation flowshop using pointer network

Author:

Cho Young In1,Nam So Hyun1,Cho Ki Young1,Yoon Hee Chang1,Woo Jong Hun12

Affiliation:

1. Department of Naval Architecture and Ocean Engineering, Seoul National University, Seoul 08826, Korea

2. Research Institute of Marine Systems Engineering, Seoul National University, Seoul 08826, Korea

Abstract

ABSTRACT During the shipbuilding process, a block assembly line suffers a bottleneck when the largest amount of material is processed. Therefore, scheduling optimization is important for the productivity. Currently, sequence of inbound products is controlled by determining the input sequence using a heuristic or metaheuristic approach. However, the metaheuristic algorithm has limitations in that the computation time increases exponentially as the number of input objects increases, and separate optimization calculations are required for every problem. Also, the heuristic such as dispatching algorithm has the limitation of the exploring the problem domain. Therefore, this study tries a reinforcement learning algorithm based on a pointer network to overcome these limitations. Reinforcement learning with pointer network is found to be suitable for permutation flowshop problem, including input-order optimization. A trained neural network is applied without re-learning, even if the number of inputs is changed. The trained model shows the meaningful results compared with the heuristic and metaheuristic algorithms in makespan and computation time. The trained model outperforms the heuristic and metaheuristic algorithms within a limited range of permutation flowshop problem.

Funder

Ministry of Trade, Industry and Energy

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics

Reference38 articles.

1. Neural combinatorial optimization with reinforcement learning;Bello,2016

2. Moth flame optimizer-based solution approach for unit commitment and generation scheduling problem of electric power system;Bhadoria;Journal of Computational Design and Engineering,2020

3. A heuristic algorithm for the n job, m machine sequencing problem;Campbell;Management Science,1970

4. Minimizing makespan in a blocking flowshop using genetic algorithms;Caraffa;International Journal of Production Economics,2001

5. Minimizing total completion time in mixed-blocking permutation flowshops;Cheng;IEEE Access,2020

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3