Moth flame optimizer-based solution approach for unit commitment and generation scheduling problem of electric power system

Author:

Bhadoria Ashutosh1,Marwaha Sanjay2

Affiliation:

1. Ph.D. Research Scholar, Department of Electrical and Instrumentation, Sant Longowal Institute of Engineering and Technology (SLIET), Longowal, Sangrur, Punjab 144022, India

2. Department of Electrical and Instrumentation, Sant Longowal Institute of Engineering and Technology (SLIET), Longowal, Sangrur, Punjab 148106, India

Abstract

Abstract This paper proposes a new approach based on the moth flame optimizer algorithm. Moth flame optimizer simulates the natural fervent navigation technique adopted by moths looking for a source of light. The proposed method is further improved by priority list-based ordering; the unit commitment problem (UCP) is a non-linear, non-convex, and combinatorial complex optimization problem. It contains both continuous and discrete variables. This further increases its complexity. Moth flame optimizer is very good at obtaining a commitment pattern: allocation of power on the committed units obtained by mixed-integer quadratic programming method. Heuristic search strategies are used to adopt for the repair of minimum up and downtime, and spinning reserve constraints. MFO effectiveness is tested on the standard UCP reference IEEE model buses 14 and 30, and 10 and 20 units. The efficiency of the projected algorithms is compared to classical PSO, PSOLR, HPSO, PSOSQP, hybrid MPSO, IBPSO, LCA-PSO, NPSO, PSO-GWO, and various other evolutionary algorithms. The comparison result shows that MFO can lead to all methods reported earlier in literature.

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modelling and Simulation,Computational Mechanics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3