Automated topology design to improve the susceptibility of naval ships using geometric deep learning

Author:

Hwang Joon-Tae12,Hong Suk-Yoon12,Song Jee-Hun3ORCID

Affiliation:

1. Department of Naval Architecture and Ocean Engineering, Seoul National University , Seoul 08826 , Republic of Korea

2. Institute of Engineering Research, Seoul National University , Seoul 08826 , Republic of Korea

3. Department of Naval Architecture and Ocean Engineering, Chonnam National University , Yeosu 59626 , Republic of Korea

Abstract

AbstractThe survivability of a naval ship is defined as its ability to evade or withstand a hostile environment while performing a given mission. Stealth technology, which reduces the probability of detection by enemy detection equipment using a highly advanced detection system, is one of the most important technologies to improve the survivability of naval ships. Moreover, radar cross-section (RCS) reduction is a very important factor in stealth technology because a small RCS, which is the main parameter determining susceptibility, improves the ability of ships to evade enemy detection equipment. In this study, an automated topology design for reducing susceptibility was developed by combining geometric deep learning and topology optimization. A convolutional neural network model was used as the geometric deep-learning model, and the triangular meshes of the naval ship models and equipment models were used as datasets. To compensate for the lack of training data, randomly generated meshes were additionally used as datasets. To express the feature data of the mesh as a matrix, points at equal intervals were projected orthogonally and the distance between the plane and point was set as a matrix value. The label data were defined as the highest RCS values excluding the cardinal points. After realizing the topology design for reducing susceptibility using the developed system, verification was performed through RCS analysis of the original model and the topology-designed model.

Funder

Institute of Engineering Research, Seoul National University

National Research Foundation of Korea

Ministry of Education, Science and Technology

Ministry of Education

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics

Reference20 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A study on ship hull form transformation using convolutional autoencoder;Journal of Computational Design and Engineering;2023-12-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3