A study on ship hull form transformation using convolutional autoencoder

Author:

Seo Jeongbeom1,Kim Dayeon1,Lee Inwon1

Affiliation:

1. Department of Naval Architecture and Ocean Engineering, Pusan National University , Busan 46241 , Korea

Abstract

Abstract The optimal ship hull form in contemporary design practice primarily consists of three parts: hull form modification, performance prediction, and optimization. Hull form modification is a crucial step to affect optimization efficiency because the baseline hull form is varied to search for performance improvements. The conventional hull form modification methods mainly rely on human decisions and intervention. As a direct expression of the three-dimensional hull form, the lines are not appropriate for machine learning techniques. This is because they do not explicitly express a meaningful performance metric despite their relatively large data dimension. To solve this problem and develop a novel machine-based hull form design technique, an autoencoder, which is a dimensional reduction technique based on an artificial neural network, was created in this study. Specifically, a convolutional autoencoder was designed; firstly, a convolutional neural network (CNN) preprocessor was used to effectively train the offsets, which are the half-width coordinate values on the hull surface, to extract feature maps. Secondly, the stacked encoder compressed the feature maps into an optimal lower dimensional-latent vector. Finally, a transposed convolution layer restored the dimension of the lines. In this study, 21 250 hull forms belonging to three different ship types of containership, LNG carrier, and tanker, were used as training data. To describe the hull form in more detail, each was divided into several zones, which were then input into the CNN preprocessor separately. After the training, a low-dimensional manifold consisting of the components of the latent vector was derived to represent the distinctive hull form features of the three ship types considered. The autoencoder technique was then combined with another novel approach of the surrogate model to form an objective function neural network. Further combination with the deterministic particle swarm optimization method led to a successful hull form optimization example. In summary, the present convolutional autoencoder has demonstrated its significance within the machine learning-based design process for ship hull forms.

Funder

National Research Foundation of Korea

Korea Institute of Energy Technology Evaluation and Planning

Ministry of Trade, Industry and Energy

Publisher

Oxford University Press (OUP)

Reference38 articles.

1. Parametric optimization of SWAT-hull forms by a viscous-inviscid free surface method driven by a differential evolution algorithm;Brizzolara,2004

2. Shape optimization in ship hydrodynamics using computational fluid dynamics;Campana;Computer Methods in Applied Mechanics and Engineering,2006

3. Hull surface modification for ship resistance performance optimization based on Delaunay triangulation;Chang;Ocean Engineering,2018

4. Development of an optimal hull form with minimum resistance in still water;Choi;Journal of Ship and Ocean Technology,2005

5. Nonlinear methods for design-space dimensionality reduction in shape optimization;D'Agostino,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3