High-performance practical stiffness analysis of high-rise buildings using superfloor elements

Author:

Torky Ahmed A12,Rashed Youssef F2

Affiliation:

1. Civil Engineering Department, Faculty of Engineering, The British University in Egypt, El Sherouk City, 11837, Egypt

2. Cairo University Faculty of Engineering Boundary Elements Research Group (CUFEBE), Faculty of Engineering, Cairo University, Giza, 12613, Egypt

Abstract

Abstract This study develops a high-performance computing method using OpenACC (Open Accelerator) for the stiffness matrix and load vector generation of shear-deformable plates in bending using the boundary element method on parallel processors. The boundary element formulation for plates in bending is used to derive fully populated displacement-based stiffness matrices and load vectors at degrees of freedom of interest. The computed stiffness matrix of the plate is defined as a single superfloor element and can be solved using stiffness analysis, $Ku = F$, instead of the conventional boundary element method, $Hu = Gt$. Fortran OpenACC code implementations are proposed for the computation of the superfloor element’s stiffness, which includes one serial computing code for the CPU (central processing unit) and two parallel computing codes for the GPU (graphics processing unit) and multicore CPU. As industrial level practical floors are full of supports and geometrical information, the computation time of superfloor elements is reduced dramatically when computing on parallel processors. It is demonstrated that the OpenACC implementation does not affect numerical accuracy. The feasibility and accuracy are confirmed by numerical examples that include real buildings with industrial level structural floors. Engineering computations for massive floors with immense geometrical detail and a multitude of load cases can be modeled as is without the need for simplification.

Funder

Science and Technology Development Fund

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics

Reference21 articles.

1. A global approach for three-dimensional analysis of tall buildings;Carpinteri;The Structural Design of Tall and Special Buildings,2010

2. Application of assembly of finite element methods on graphics processors for real-time elastodynamics;Cecka,2012

3. A study on the source points locations in the method of fundamental solution;Fam,2002

4. GPU acceleration for FEM-based structural analysis;Georgescu;Archives of Computational Methods in Engineering,2013

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3