Robust deep learning-based fault detection of planetary gearbox using enhanced health data map under domain shift problem

Author:

Hwang Taewan12,Ha Jong Moon3ORCID,Youn Byeng D124ORCID

Affiliation:

1. OnePredict Inc. , Seoul 08826 , South Korea

2. Department of Mechanical Engineering, Seoul National University , Seoul 08826 , South Korea

3. Intelligent Wave Engineering Team, Korea Research Institute of Standards and Science (KRISS) , Daejeon 34113 , South Korea

4. Institute of Advanced Machines and Design, Seoul National University , Seoul 08826 , South Korea

Abstract

Abstract The conventional deep learning-based fault diagnosis approach faces challenges under the domain shift problem, where the model encounters different working conditions from the ones it was trained on. This challenge is particularly pronounced in the diagnosis of planetary gearboxes due to the complicated vibrations they generate, which can vary significantly based on the system characteristics of the gearbox. To solve this challenge, this paper proposes a robust deep learning-based fault-detection approach for planetary gearboxes by utilizing an enhanced health data map (HDMap). Although there is an HDMap method that visually expresses the vibration signal of the planetary gearbox according to the gear meshing position, it is greatly influenced by machine operating conditions. In this study, domain-specific features from the HDMap are further removed, while the fault-related features are enhanced. Autoencoder-based residual analysis and digital image-processing techniques are employed to address the domain-shift problem. The performance of the proposed method was validated under significant domain-shift problem conditions, as demonstrated by studying two gearbox test rigs with different configurations operated under stationary and non-stationary operating conditions. Validation accuracy was measured in all 12 possible domain-shift scenarios. The proposed method achieved robust fault detection accuracy, outperforming prior methods in most cases.

Funder

National Research Foundation of Korea

National Research Foundation

MSIT

National Research Council of Science & Technology

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3