Diagnosis-based design of electric power steering system considering multiple degradations: role of designable generative adversarial network anomaly detection

Author:

Kim Jeongbin1,Yang Dabin1,Lee Jongsoo1

Affiliation:

1. School of Mechanical Engineering, Yonsei University , Seoul 03722 , Korea

Abstract

Abstract Recently, interest in functional safety has surged because vehicle technology increasingly relies on electronics and automation. Failure of certain system components can endanger driver safety and is costly to address. The detection of abnormal data is crucial for enhancing the reliability, safety, and efficiency. This study introduces a novel anomaly-detection method of designable generative adversarial network anomaly detection (DGANomaly). DGANomaly combines the data augmentation method of a designable generative adversarial network (DGAN) with a generative adversarial network anomaly-detection data classification technique. DGANomaly not only generates virtual data that are challenging to obtain or simulate but also produces a range of statistical design variables for normal and abnormal data. This approach enables the specific identification of normal and abnormal design variables. To demonstrate its effectiveness, the DGANomaly method was applied to an electric power steering (EPS) model when multiple degradations of gear stiffness, gear friction, and rack displacement were considered. An EPS model was constructed and validated using simulation programs such as Prescan, Amesim, and Simulink. Consequently, DGANomaly exhibited a higher classification accuracy than the other methods, allowing for more accurate detection of abnormal data. Additionally, a clearer range of statistical designs can be obtained for normal data. These results indicate that the statistical design variables that are less likely to fail can be obtained using minimal data.

Funder

National Research Foundation of Korea

Korea Evaluation Institute of Industrial Technology

Publisher

Oxford University Press (OUP)

Reference44 articles.

1. GANomaly: Semi-supervised anomaly detection via adversarial training;Akcay,2018

2. Guidelines for defining a design standard for an electrical steering system;Arcidiacono;Journal of Engineering Design,2002

3. Modeling of double lane change maneuver of vehicles;Arefnezhad;International Journal of Automotive Technology,2018

4. GM recalls 1.3 million cars to fix power steering in U.S;Barajas,2014

5. Tesla recalls more than 40,000 U.S. cars over possible loss of power steering;Capoot,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3