Docosahexaenoic acid reduces microglia phagocytic activity via miR-124 and induces neuroprotection in rodent models of spinal cord contusion injury

Author:

Yip Ping K1,Bowes Amy L1,Hall Jodie C E2,Burguillos Miguel A13,Ip T H Richard1,Baskerville Tracey1,Liu Zhuo-Hao14,Mohamed Moumin A E K1,Getachew Fanuelle1,Lindsay Anna D1,Najeeb Saif-Ur-Rehman1,Popovich Phillip G2,Priestley John V1,Michael-Titus Adina T1

Affiliation:

1. Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK

2. Centre for Brain and Spinal Cord Repair, Department of Neuroscience, Wexner Medical Center at The Ohio State University, Columbus, OH, USA

3. Instituto de Biomedicina de Sevilla (IBiS)/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla and, Sevilla, Spain

4. Chang Gung Medical College and University, Chang Gung Memorial Hospital, Department of Neurosurgery, 5 Fu-Shin Street, Linkou, Taiwan

Abstract

Abstract Microglia are activated after spinal cord injury (SCI), but their phagocytic mechanisms and link to neuroprotection remain incompletely characterized. Docosahexaenoic acid (DHA) has been shown to have significant neuroprotective effects after hemisection and compression SCI and can directly affect microglia in these injury models. In rodent contusion SCI, we demonstrate that DHA (500 nmol/kg) administered acutely post-injury confers neuroprotection and enhances locomotor recovery, and also exerts a complex modulation of the microglial response to injury. In rodents, at 7 days after SCI, the level of phagocytosed myelin within Iba1-positive or P2Y12-positive cells was significantly lower after DHA treatment, and this occurred in parallel with an increase in intracellular miR-124 expression. Furthermore, intraspinal administration of a miR-124 inhibitor significantly reduced the DHA-induced decrease in myelin phagocytosis in mice at 7 days post-SCI. In rat spinal primary microglia cultures, DHA reduced the phagocytic response to myelin, which was associated with an increase in miR-124, but not miR-155. A similar response was observed in a microglia cell line (BV2) treated with DHA, and the effect was blocked by a miR-124 inhibitor. Furthermore, the phagocytic response of BV2 cells to stressed neurones was also reduced in the presence of DHA. In peripheral monocyte-derived macrophages, the expression of the M1, but not the M0 or M2 phenotype, was reduced by DHA, but the phagocytic activation was not altered. These findings show that DHA induces neuroprotection in contusion injury. Furthermore, the improved outcome is via a miR-124-dependent reduction in the phagocytic response of microglia.

Funder

Congressionally Directed Medical Research Programs

Barts and London Charity

Rod Flower Vacation Scholarship

International Spinal Research Trust

Chang Gung Memorial Hospital

Spanish Ministry of Economy and Competitivity

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology,General Medicine

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3