Limitations of Free Light Chain Assays caused by the Matrix Effect

Author:

Farnsworth Christopher W1,Logsdon Nicole M2,Hayes Jennifer E2,Rais Rehan1,Willrich Maria A3,Gronowski Ann M1

Affiliation:

1. Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University, St. Louis, MO

2. Barnes Jewish Hospital, St. Louis, MO

3. Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN

Abstract

Abstract Background Serum free light chain (FLC) assays are used clinically to measure the concentration of κ and λ FLC in patients with suspected or diagnosed plasma cell proliferative disorders. Previous studies have demonstrated a loss of linearity in low concentration ranges of these assays. We hypothesized that this result could be caused by a matrix effect. Methods Recovery studies were performed for κ and λ FLC in both serum and saline using the Freelite assay (Binding Site) on a Cobas c502 system (Roche). Samples were analyzed either at the recommended dilution or undiluted. Follow-up studies were performed in varying matrices ranging from 0% to 100% saline. Retrospective patient data were analyzed to assess the impact on reported κ FLC, λ FLC, and κ/λ ratio. Results FLC in a serum matrix demonstrated underrecovery relative to samples diluted in saline for both κ and λ FLC. Of 255 patient samples with λ FLC measured undiluted (λ FLC <6.0 mg/L), an unexpected gap was observed in patient results between 2.0 and 6.0 mg/L. In addition, 23 patients measured serially with λ FLC between 2.0 and 6.0 mg/L demonstrated dramatic changes in κ/λ ratio, with no changes in κ FLC, likely because of the matrix effect. Conclusions The κ and λ Freelite assays exhibit a matrix effect when samples are tested undiluted, which has the potential to affect the κ/λ ratio. Consequently, our laboratory has stopped reporting λ FLC <6.0 mg/L.

Funder

Siemens Healthineers

Publisher

Oxford University Press (OUP)

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3