Does root respiration in Australian rainforest tree seedlings acclimate to experimental warming?

Author:

Noh Nam Jin12ORCID,Crous Kristine Y1ORCID,Li Jinquan13ORCID,Choury Zineb1ORCID,Barton Craig V M1ORCID,Arndt Stefan K4ORCID,Reich Peter B15ORCID,Tjoelker Mark G1ORCID,Pendall Elise1ORCID

Affiliation:

1. Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia

2. Forest Technology and Management Research Center, National Institute of Forest Science, Pochoen, Gyeonggi 11186, Republic of Korea

3. Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, Shanghai 200438, China

4. School of Ecosystem and Forest Science, The University of Melbourne, Richmond, VIC 3121, Australia

5. Department of Forest Resources, University of Minnesota, St. Paul, MN 55108, USA

Abstract

Abstract Plant respiration can acclimate to changing environmental conditions and vary between species as well as biome types, although belowground respiration responses to ongoing climate warming are not well understood. Understanding the thermal acclimation capacity of root respiration (Rroot) in relation to increasing temperatures is therefore critical in elucidating a key uncertainty in plant function in response to warming. However, the degree of temperature acclimation of Rroot in rainforest trees and how root chemical and morphological traits are related to acclimation is unknown. Here we investigated the extent to which respiration of fine roots (≤2 mm) of four tropical and four warm-temperate rainforest tree seedlings differed in response to warmer growth temperatures (control and +6 °C), including temperature sensitivity (Q10) and the degree of acclimation of Rroot. Regardless of biome type, we found no consistent pattern in the short-term temperature responses of Rroot to elevated growth temperature: a significant reduction in the temperature response of Rroot to +6 °C treatment was only observed for a tropical species, Cryptocarya mackinnoniana, whereas the other seven species had either some stimulation or no alteration. Across species, Rroot was positively correlated with root tissue nitrogen concentration (mg g−1), while Q10 was positively correlated with root tissue density (g cm−3). Warming increased root tissue density by 20.8% but did not alter root nitrogen across species. We conclude that thermal acclimation capacity of Rroot to warming is species-specific and suggest that root tissue density is a useful predictor of Rroot and its thermal responses in rainforest tree seedlings.

Funder

Discovery Early Career Researcher Award

Australian Research Council

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3