The hot and the cold: unravelling the variable response of plant respiration to temperature

Author:

Atkin Owen K.,Bruhn Dan,Hurry Vaughan M.,Tjoelker Mark G.

Abstract

When predicting the effects of climate change, global carbon circulation models that include a positive feedback effect of climate warming on the carbon cycle often assume that (1) plant respiration increases exponentially with temperature (with a constant Q10) and (2) that there is no acclimation of respiration to long-term changes in temperature. In this review, we show that these two assumptions are incorrect. While Q10 does not respond systematically to elevated atmospheric CO2 concentrations, other factors such as temperature, light, and water availability all have the potential to influence the temperature sensitivity of respiratory CO2 efflux. Roots and leaves can also differ in their Q10 values, as can upper and lower canopy leaves. The consequences of such variable Q10 values need to be fully explored in carbon modelling. Here, we consider the extent of variability in the degree of thermal acclimation of respiration, and discuss in detail the biochemical mechanisms underpinning this variability; the response of respiration to long-term changes in temperature is highly dependent on the effect of temperature on plant development, and on interactive effects of temperature and other abiotic factors (e.g. irradiance, drought and nutrient availability). Rather than acclimating to the daily mean temperature, recent studies suggest that other components of the daily temperature regime can be important (e.g. daily minimum and / or night temperature). In some cases, acclimation may simply reflect a passive response to changes in respiratory substrate availability, whereas in others acclimation may be critical in helping plants grow and survive at contrasting temperatures. We also consider the impact of acclimation on the balance between respiration and photosynthesis; although environmental factors such as water availability can alter the balance between these two processes, the available data suggests that temperature-mediated differences in dark leaf respiration are closely linked to concomitant differences in leaf photosynthesis. We conclude by highlighting the need for a greater process-based understanding of thermal acclimation of respiration if we are to successfully predict future ecosystem CO2 fluxes and potential feedbacks on atmospheric CO2 concentrations.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3