Effects of combined drought and pathogen stress on growth, resistance and gene expression in young Norway spruce trees

Author:

Krokene P1,Børja I1,Carneros E12,Eldhuset T D13,Nagy N E1,Volařík D45,Gebauer R45ORCID

Affiliation:

1. Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research , P.O. Box 115, Ås, 1431 , Norway

2. Center for Biological Research Margarita Salas-Spanish National Research Council (CSIC) , Madrid , Spain

3. Sagveien 17 , 1414, Trollåsen , Norway

4. Department of Forest Botany , Dendrology and Geobicoenology, , Zemědělská 3, Brno, 61300 , Czech Republic

5. Mendel University in Brno , Dendrology and Geobicoenology, , Zemědělská 3, Brno, 61300 , Czech Republic

Abstract

Abstract Drought-induced mortality is a major direct effect of climate change on tree health, but drought can also affect trees indirectly by altering their susceptibility to pathogens. Here, we report how a combination of mild or severe drought and pathogen infection affected the growth, pathogen resistance and gene expression in potted 5-year-old Norway spruce trees [Picea abies (L.) Karst.]. After 5 weeks of drought, trees were inoculated with the fungal pathogen Endoconidiophora polonica. Combined drought–pathogen stress over the next 8 weeks led to significant reductions in the growth of drought-treated trees relative to well-watered trees and more so in trees subjected to severe drought. Belowground, growth of the smallest fine roots was most affected. Aboveground, shoot diameter change was most sensitive to the combined stress, followed by shoot length growth and twig biomass. Both drought-related and some resistance-related genes were upregulated in bark samples collected after 5 weeks of drought (but before pathogen infection), and gene expression levels scaled with the intensity of drought stress. Trees subjected to severe drought were much more susceptible to pathogen infection than well-watered trees or trees subjected to mild drought. Overall, our results show that mild drought stress may increase the tree resistance to pathogen infection by upregulating resistance-related genes. Severe drought stress, on the other hand, decreased tree resistance. Because drought episodes are expected to become more frequent with climate change, combined effects of drought and pathogen stress should be studied in more detail to understand how these stressors interactively influence tree susceptibility to pests and pathogens.

Funder

Norwegian Financial Mechanism

Programme Education within EEA

Ministry of Education, Youth and Sports of the Czech Republic

Norwegian Institute of Bioeconomy Research

Universidad Complutense de Madrid

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3