Nano-Food Farming Approaches to Mitigate Heat Stress under Ongoing Climate Change: A Review

Author:

El-Ramady Hassan12ORCID,Prokisch József2ORCID,El-Mahrouk Mohammed E.3,Bayoumi Yousry A.3ORCID,Shalaby Tarek A.3ORCID,Brevik Eric C.4ORCID,Solberg Svein Ø.5ORCID

Affiliation:

1. Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt

2. Nanofood Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary

3. Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt

4. College of Agricultural, Life and Physical Sciences, Southern Illinois University, Carbondale, IL 62901, USA

5. Faculty of Applied Ecology, Agriculture and Biotechnology, Inland Norway University of Applied Sciences, 2401 Elverum, Norway

Abstract

Increased heat stress is a common feature of global climate change and can cause adverse impacts on crops from germination through maturation and harvest. This review focuses on the impacts of extreme heat (>35 °C) on plants and their physiology and how they affect food and water security. The emphasis is on what can be done to minimize the negative effects of heat stress, which includes the application of various materials and approaches. Nano-farming is highlighted as one promising approach. Heat is often combined with drought, salinity, and other stresses, which together affect the whole agroecosystem, including soil, plants, water, and farm animals, leading to serious implications for food and water resources. Indeed, there is no single remedy or approach that can overcome such grand issues. However, nano-farming can be part of an adaptation strategy. More studies are needed to verify the potential benefits of nanomaterials but also to investigate any negative side-effects, particularly under the intensive application of nanomaterials, and what problems this might create, including potential nanotoxicity.

Funder

Stipendium Hungaricum Scholarship Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3