Bacillus thuringiensis cry1C expression from the plastid genome of poplar leads to high mortality of leaf-eating caterpillars

Author:

Wu Yuyong1,Xu Letian1,Chang Ling1,Ma Meiqi1,You Lili1,Jiang Chunmei1,Li Shengchun1,Zhang Jiang1ORCID

Affiliation:

1. State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China

Abstract

AbstractPlastid transformation technology has several attractive features compared with traditional nuclear transformation technology. However, only a handful of species are able to be successfully transformed. Here, we report an efficient and stable plastid transformation protocol for poplar, an economically important tree species grown worldwide. We transformed the Bacillus thuringiensis cry1C gene into the poplar plastid genome, and homoplasmic transplastomic poplar was obtained after two to three rounds of regeneration under antibiotic selection for 7–12 months. The transplastomic poplar expressing Cry1C insecticidal protein showed the highest accumulation level in young leaves, which reached up to 20.7 μg g-1 fresh weight, and comparatively low levels in mature and old leaves, and hardly detectable levels in non-green tissues, such as phloem, xylem and roots. Transplastomic poplar showed high toxicity to Hyphantria cunea and Lymantria dispar, two notorious forest pests worldwide, without affecting plant growth. These results are the first successful examples of insect-resistant poplar generation by plastid genome engineering and provide a new avenue for future genetic improvement of poplar plants.

Funder

Recruitment Program of Global Experts

Science and Technology Department of Hubei Province of China

National Key Research and Development Program of China

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3