Cell wall‐localized Bt protein endows rice high resistance to Lepidoptera pests

Author:

Li Hua12,Deng Lihua1,Weng Lvshui1,Li Jinjiang1,Hu Wenbin3,Yu Jianghui1,Xiao Youlun3,Xiao Guoying1ORCID

Affiliation:

1. Key Laboratory of Agro‐ecological Processes in Subtropical Region Institute of Subtropical Agriculture, Chinese Academy of Sciences Changsha China

2. University of Chinese Academy of Sciences Beijing China

3. Hunan Academy of Agricultural Sciences Changsha China

Abstract

AbstractBACKGROUNDThe commercialized Bt (Bacillus thuringiensis) crops accumulate Bt protein within cells, but the intracellular interactions of foreign protein with endogenous protein inevitably result in large or small unintended effects. In this study, the Bt gene Cry1Ca was linked with the sequences of extracellular secretion signal peptide and carbohydrate binding module 11 to constitute a fusion gene SP‐Cry1Ca‐CBM11, and the fusion gene driven by constitutive promoters was used for secreting and anchoring onto the cell wall to minimize unintended effects.RESULTSThe transient expression in tobacco leaves demonstrated that the fusion protein was anchored on cell walls. The Cry1Ca contents of five homozygous rice transformants of single‐copy insertion were different and descended in the order leaf > root > stem. The maximum content of Cry1Ca was 17.55 μg g−1 in leaves of transformant 21H037. The bioassay results revealed that the transformants exhibited high resistance to lepidopteran pests. The corrected mortality of pink stem borer (Sesamia inferens) and striped stem borer (Chilo suppressalis) ranged from 96.33% to 100%, and from 83.32% to 100%, respectively, and the corrected mortality of rice leaf roller (Cnaphalocrocis medinalis) was 92.53%. Besides, the agronomic traits of the five transformants were normal and similar to that of the recipient, and the transformants were highly resistant to glyphosate at the germination and seedling stages.CONCLUSIONThe fusion Bt protein was accumulated on cell walls and endowed the rice with high resistance to lepidopteran pests without unintended effects in agronomic traits. © 2023 Society of Chemical Industry.

Publisher

Wiley

Subject

Insect Science,Agronomy and Crop Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3