Exogenous GABA promotes adaptation and growth by altering the carbon and nitrogen metabolic flux in poplar seedlings under low nitrogen conditions

Author:

Chen Wei1ORCID,Meng Chen2,Ji Jing1,Li Mai-He345,Zhang Xiaoman6,Wu Yanyan1,Xie Tiantian1,Du Changjian1,Sun Jiacheng1,Jiang Zeping7,Shi Shengqing1ORCID

Affiliation:

1. State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, the Chinese Academy of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China

2. Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Gregor-Mendel-Strasse 4, Freising 85354, Germany

3. Forest Dynamics, Swiss Federal Research Institute WSL, Zuercherstrasse 111, Birmensdorf CH-8903, Switzerland

4. Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Wenhua Road 72, Shenhe District, Shenyang 110016, China

5. Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Renmin Street 268, Nanguan District, Changchun 130024, China

6. College of Landscape Architecture, Hebei Agricultural University, Lekai South Street 2596, Lianchi District, Baoding 071000, China

7. Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, The Chinese Academy of Forestry, LXiangshan Road, Haidian District, Beijing 100091, China

Abstract

Abstract Nitrogen (N) deficiency adversely affects tree growth. Additionally, γ-aminobutyric acid (GABA) is closely associated with growth and stress responses because of its effects on carbon (C) and N metabolism. However, little is known about its roles related to plant adaptations to N-deficient conditions. In this study, we analyzed the effects of GABA (0, 2 and 10 mM) applications on the growth traits and physiological responses of poplar (Populus alba × P. glandulosa ‘84K’) seedlings under high N (HN) and low N (LN) conditions. We found that the added GABA interacted with N to affect more than half of the studied parameters, with greater effects in LN plants than in HN plants. Under LN conditions, the GABA application tended to increase poplar growth, accompanied by increased xylem fiber cell length and xylem width. In stems, exogenous GABA increased the abundance of non-structural carbohydrates (starch and sugars) and tricarboxylic acid cycle intermediates (succinate, malate and citrate), but had the opposite effect on the structural C contents (hemicellulose and lignin). Meanwhile, exogenous GABA increased the total soluble protein contents in leaves and stems, accompanied by significant increases in nitrate reductase, nitrite reductase and glutamine synthetase activities in leaves, but significant decreases in those (except for the increased glutamate synthetase activity) in stems. A multiple factorial analysis indicated that the nitrate assimilation pathway substantially influences poplar survival and growth in the presence of GABA under LN conditions. Interestingly, GABA applications also considerably attenuated the LN-induced increase in the activities of leaf antioxidant enzymes, including peroxidase and catalase, implying that GABA may regulate the relative allocation of C and N for growth activities by decreasing the energy cost associated with stress defense. Our results suggest that GABA enhances poplar growth and adaptation by regulating the C and N metabolic flux under N-deficient conditions.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3