Genome-wide investigation of DNA methylation dynamics reveals a critical role of DNA demethylation during the early somatic embryogenesis of Dimocarpus longan Lour

Author:

Chen Xiaohui1ORCID,Xu Xiaoping1,Shen Xu1,Li Hansheng12,Zhu Chen1,Chen Rongzhu1,Munir Nigarish1,Zhang Zihao1,Chen Yukun1,Xuhan Xu13,Lin Yuling1,Lai Zhongxiong1

Affiliation:

1. Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2. School of Resources and Chemical Engineering, Sanming University, Sanming 365000, China

3. Institut de la Recherche Interdisciplinaire de Toulouse, IRIT-ARI, 31300 Toulouse, France

Abstract

Abstract DNA methylation plays essential roles in gene regulation, chromatin structure stability, gene imprinting, X chromosome inactivation and embryonic development. However, the dynamics and functions of DNA methylation during the early stage of longan (Dimocarpus longan) somatic embryogenesis (SE) are still unclear. In this study, we carried out whole genome bisulphite sequencing and transcriptome sequencing analyses for embryogenic callus (EC), incomplete compact pro-embryogenic cultures (ICpEC) and globular embryos (GE) in an early SE system. At a global level, the DNA 5-methylcytosine content in EC, ICpEC and GE was 24.59, 19.65 and 19.74%, respectively, suggesting a global decrease in DNA methylation from EC to ICpEC and then a slight increase from ICpEC to GE. Differentially methylated region (DMR) analysis showed that hypomethylation mainly occurred in CHH contexts. Gene ontology and Kyoto encyclopedia of genes and genomes analysis of hypomethylated-CHH-DMR-associated genes revealed that zein biosynthesis, fatty acid biosynthesis, circadian rhythm and mitophagy pathways were involved in longan early SE. Expression patterns of DNA methyltransferase and demethylase genes during longan early SE suggested that the decrease in DNA methylation was probably regulated by DNA methyltransferase genes and the DNA demethylase gene REPRESSOR OF SILENCING 1 (ROS1). The correlation between DNA hypomethylation and gene expression revealed that decreased DNA methylation did not cause extensive changes in gene expression during early longan SE and that gene expression may be affected by methylation changes in gene and downstream regions. Inhibiting DNA methylation with 5-azacytidine treatment in EC promoted the formation of GE and enhanced the capability of longan SE. Our results suggest that DNA demethylation has important roles in longan SE development.

Funder

National Natural Science Foundation of China

Science and Technology Plan Major Projects of Fujian Province

New Century Excellent Talents program in Fujian Province University

Fujian Agricultural and Forestry University Applied Basic Research

Basic Research

Plateau Discipline Construction in Fujian Province

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Reference71 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3