Epigenetic memory of temperature sensed during somatic embryo maturation in 2-year-old maritime pine trees

Author:

Trontin J.-F.ORCID,Sow M.D.ORCID,Delaunay A.ORCID,Modesto I.ORCID,Teyssier C.ORCID,Reymond I.,Canlet F.,Boizot N.ORCID,Le Metté C.,Gibert A.,Chaparro C.ORCID,Daviaud C.,Tost J.ORCID,Miguel C.ORCID,Lelu-Walter M.-A.ORCID,Maury S.ORCID

Abstract

AbstractEmbryogenesis is a brief but potentially critical phase in the tree life cycle for adaptive phenotypic plasticity. Using somatic embryogenesis in maritime pine, we found that temperature during the maturation phase affects embryo development and post-embryonic tree growth for up to three years. We examined whether this somatic stress memory could stem from temperature- and/or development-induced changes in DNA methylation. To do this, we developed a 200 Mb custom sequence capture bisulfite analysis of genes and promoters to identify differentially methylated cytosines (DMCs) between temperature treatments (18, 23, and 28°C) and developmental stages (immature and cotyledonary embryos, shoot apical meristem of 2-year-old plants) and investigate if these differences can be mitotically transmitted from embryonic to post-embryonic development (epigenetic memory). We revealed a high prevalence of temperature-induced DMCs in genes (8-14%) compared to promoters (less than 1%) in all 3 cytosine contexts. Developmental DMCs showed a comparable pattern but only in the CG context, and with a high trend towards hypo-methylation, particularly in the promoters. A high percentage of DMCs induced by developmental transitions were found memorized in genes (up to 45-50%) and promoters (up to 90%). In contrast, temperature-induced memory was lower and confined to genes after both embryonic (up to 14%) and post-embryonic development (up to 8%). Using stringent criteria, we identified ten genes involved in defense responses and adaptation, embryo development and chromatin regulation that are candidates for the establishment of a persistent epigenetic memory of temperature sensed during embryo maturation in maritime pine.Graphical abstract

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3