Nanoparticles are linked to polar lipids in xylem sap of temperate angiosperm species

Author:

Guan Xinyi1ORCID,Schenk H Jochen2ORCID,Roth Mary R3,Welti Ruth3,Werner Julia1,Kaack Lucian1,Trabi Christophe L1,Jansen Steven1

Affiliation:

1. Institute of Systematic Botany and Ecology , Ulm University, Albert-Einstein-Allee 11, 89081 Ulm , Germany

2. Department of Biological Science , California State University Fullerton, 800 N. State College Boulevard, Fullerton, CA 92831 , USA

3. Kansas Lipidomics Research Center , Division of Biology, Kansas State University, Manhattan, KS 66506 , USA

Abstract

Abstract In previous research, xylem sap of angiosperms has been found to include low concentrations of nanoparticles and polar lipids. A major goal of this study was to test predictions arising from the hypothesis that the nanoparticles consist largely of polar lipids from the original cell content of vessel elements. These predictions included that polar lipid and nanoparticle concentrations would be correlated, that they both do not pass through pit membranes and that they do not vary seasonally because they originate from living vessel element cells. We collected xylem sap of six temperate angiosperm species over the whole year to consider seasonal variation. Concentrations of nanoparticles and lipids in xylem sap and contamination control samples were measured with a NanoSight device and mass spectrometry. We found that the concentration of nanoparticles and polar lipids was (i) diluted when an increasing amount of sap was extracted, (ii) significantly correlated to each other for three species, (iii) affected by vessel anatomy, (iv) very low and largely different in chemical composition from contamination controls and (v) hardly variable among seasons. Moreover, there was a minor freezing–thawing effect with respect to nanoparticle amount and size. Xylem sap lipids included polar galactolipids and phospholipids in all species and neutral triacylglycerols in two species. These findings support the predictions and, by implication, the underlying hypothesis that nanoparticles in xylem sap consist of polar lipids from the original cell content of living vessel element cells. Further research is needed to examine the formation and stability of nanoparticles concerning lipid composition and multiphase interactions among gas, liquid and solid phases in xylem conduits of living plants.

Funder

National Science Foundation

German Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3