Nanobubbles in vase water inhibit transpiration and prolong the vase life of cut chrysanthemum flowers

Author:

Nakazawa Rie1,Tanaka Akito2,Hata Naoki1,Minagawa Hisato3,Harada Emiko1ORCID

Affiliation:

1. School of Environmental Science The University of Shiga Prefecture Hikone Shiga Japan

2. Graduate School of Engineering The University of Shiga Prefecture Hikone Shiga Japan

3. School of Engineering The University of Shiga Prefecture Hikone Shiga Japan

Abstract

AbstractNanobubble (NB) water has been shown to promote the growth of several types of plants and animals, but the mechanism underlying this promoting effect remains unclear. The present study evaluated the mechanism by which NBs maintain the freshness of cut flowers by keeping cut chrysanthemum (Chrysanthemum morifolium Ramat.) flowers at the bud stage in vase water containing air NBs. The condition of petals and leaves was assessed to determine the vase life of these cut flowers. The NB treatment delayed bud opening and petal senescence of the inflorescences. Water absorption and transpiration by cut flower stems were lower in NB water than in distilled water (DW). Furthermore, when all the leaves were removed from the cut flower stems, no significant difference in vase life was observed between NB water and DW. These findings indicate that the inhibition of transpiration from leaves prolonged the vase life of NB‐treated cut chrysanthemum flowers. In the early stage of the treatment, NB treatment significantly reduced transpiration without closing stomata, suggesting that the reduction in transpiration observed in the NB‐treated plants might be due to the suppression of cuticular transpiration, defined as water loss through the epidermis. Surface tension, one of the important driving forces of water movement in plants, was not affected by the presence of NBs in water. To our knowledge, this is the first report to show that transpiration from leaves is inhibited by NB treatment.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3