Roles of lower-side leaf trichomes in diffusion resistance and gas-exchange characteristics across environmental gradients inMetrosideros polymorpha

Author:

Amada Gaku123,Yoshiko Kosugi1,Kitayama Kanehiro1,Onoda Yusuke1

Affiliation:

1. Graduate School of Agriculture, Kyoto University , Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 , Japan

2. Institute of Arctic Climate and Environment Research , Research Institute for Global Change, , Yokohama 236-0001 , Japan

3. Japan Agency for Marine-Earth Science and Technology , Research Institute for Global Change, , Yokohama 236-0001 , Japan

Abstract

AbstractLeaf trichomes on the lower leaf surface are common in many plant species, especially those grown under dry and/or low-temperature conditions; however, their adaptive significance remains unclear. Lower-side leaf trichomes can directly decrease gas fluxes through increased gas-diffusion resistance but can indirectly increase gas fluxes through increased leaf temperature owing to increased heat-diffusion resistance. We examined whether the combined direct and indirect effects of trichome resistance increase photosynthetic rates and water-use efficiency (WUE) using Metrosideros polymorpha Gaud., which varies widely in the masses of lower-side non-glandular leaf trichomes across various environments on the Hawaiian Islands. We employed both field surveys, including ecophysiological measurements at five elevation sites, and simulation analyses to predict the gas-exchange rates of leaves with various trichome-layer thicknesses across a wide range of environmental conditions. Field surveys showed that the trichome-layer thickness was the largest at the coldest and driest site and the thinnest at the wettest site. Field surveys, experimental manipulations and simulation analyses demonstrated that leaf trichomes significantly increased leaf temperature owing to the increased heat resistance. Simulation analyses showed that the effect of leaf trichomes on heat resistance was much larger than that on gas-flux resistance. Leaf trichomes can increase daily photosynthesis only in cold dry areas by increasing the leaf temperature. However, the increased leaf temperature with leaf trichomes resulted in a consistent decrease in the daily WUE at all elevation sites. The magnitudes of trichome effects on gas-exchange rates were associated with the temperature difference across the elevational gradient, the strong light intensity in Hawaii, the leaf-size variation and the conservative stomatal behavior of M. polymorpha as well as the trichome-layer thickness. In summary, the lower-side leaf trichomes in M. polymorpha can be beneficial for carbon assimilation in low-temperature environments but not for water conservation in most environments in terms of diffusion resistance.

Funder

Japan Society for the Promotion of Science

CoHHO

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3