Affiliation:
1. College of Horticulture and Plant Protection, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
2. Agricultural College, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
Abstract
Abstract
The pollination drop (PD), also known as an ovular secretion, is a critical feature of most wind-pollinated gymnosperms and function as an essential component of pollination systems. However, the metabolome and small RNAs of gymnosperm PDs are largely unknown. We employed gas chromatography–mass spectrometry to identify a total of 101 metabolites in Ginkgo biloba L. PDs. The most abundant metabolites were sugars (45.70%), followed by organic acids (15.94%) and alcohols (15.39%) involved in carbohydrate metabolism, glycine, serine and threonine metabolism. Through pollen culture of the PDs, we further demonstrated that the metabolic components of PDs are indispensable for pollen germination and growth; in particular, organic acids and fatty acids play defensive roles against microbial activity. In addition, we successfully constructed a small RNA library and detected 45 known and 550 novel miRNAs in G. biloba PDs. Interestingly, in a comparative analysis of miRNA expression between PDs and ovules, we found that most of the known miRNAs identified in PDs were also expressed in the ovules, implying that miRNAs in PDs may originate from ovules. Further, combining with potential target prediction, degradome validation and transcriptome sequencing, we identified that the interactions of several known miRNAs and their targets in PDs are involved in carbohydrate metabolism, hormone signaling and defense response pathways, consistent with the metabolomics results. Our results broaden the knowledge of metabolite profiling and potential functional roles in gymnosperm PDs and provide the first evidence of extracellular miRNA functions in ovular secretions from gymnosperms.
Funder
Yangzhou University International Academic Exchange Fund
Qing Lan Project of Jiangsu Province
Natural Science Foundation of Jiangsu Province
National Natural Science Foundation of China
Publisher
Oxford University Press (OUP)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献