Genome-Wide Identification, Characterization, and Expression Analysis of NF-Y Gene Family in Ginkgo biloba Seedlings and GbNF-YA6 Involved in Heat-Stress Response and Tolerance

Author:

Wang Tongfei1,Zou Helin1,Ren Shixiong1,Jin Biao1ORCID,Lu Zhaogeng1ORCID

Affiliation:

1. College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China

Abstract

Nuclear factor Y (NF-Y) transcription factors play an essential role in regulating plant growth, development, and stress responses. Despite extensive research on the NF-Y gene family across various species, the knowledge regarding the NF-Y family in Ginkgo biloba remains unknown. In this study, we identified a total of 25 NF-Y genes (seven GbNF-YAs, 12 GbNF-YBs, and six GbNF-YCs) in the G. biloba genome. We characterized the gene structure, conserved motifs, multiple sequence alignments, and phylogenetic relationships with other species (Populus and Arabidopsis). Additionally, we conducted a synteny analysis, which revealed the occurrence of segment duplicated NF-YAs and NF-YBs. The promoters of GbNF-Y genes contained cis-acting elements related to stress response, and miRNA–mRNA analysis showed that some GbNF-YAs with stress-related cis-elements could be targeted by the conserved miRNA169. The expression of GbNF-YA genes responded to drought, salt, and heat treatments, with GbNF-YA6 showing significant upregulation under heat and drought stress. Subcellular localization indicated that GbNF-YA6 was located in both the nucleus and the membrane. Overexpressing GbNF-YA6 in ginkgo callus significantly induced the expression of heat-shock factors (GbHSFs), and overexpressing GbNF-YA6 in transgenic Arabidopsis enhanced its heat tolerance. Additionally, Y2H assays demonstrated that GbNF-YA6 could interact with GbHSP at the protein level. Overall, our findings offer novel insights into the role of GbNF-YA in enhancing abiotic stress tolerance and warrant further functional research of GbNF-Y genes.

Funder

Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference53 articles.

1. The NF-YB/NF-YC structure gives insight into DNA binding and transcription regulation by CCAAT factor NF-Y;Romier;J. Biol. Chem.,2003

2. The multifaceted roles of NUCLEAR FACTOR-Y in Arabidopsis thaliana development and stress responses;Swain;Biochim. Biophys. Acta,2017

3. The animal nuclear factor Y: An enigmatic and important heterotrimeric transcription factor;Li;Am. J. Cancer Res.,2018

4. Tissue-specific expression patterns of Arabidopsis NF-Y transcription factors suggest potential for extensive combinatorial complexity;Siefers;Plant Physiol.,2009

5. Genome-wide identification and co-expression network analysis of the OsNF-Y gene family in rice;Yang;Crop J.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3