The mechanism of bud dehyperhydricity by the method of ‘starvation drying combined with AgNO3’ in Lycium ruthenicum

Author:

Li Lujia1,An Qinxia1,Wang Qin-Mei1ORCID,Liu Wen1,Qi Xinyu1,Cui Jianguo1,Wang Yucheng1ORCID,Ke Haifeng1

Affiliation:

1. Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University , Shenyang 110866 , China

Abstract

Abstract Micropropagation is very important for rapid clonal propagation and scientific research of woody plants. However, the micropropagated materials usually show hyperhydricity, which seriously hinders application of the micropropagation. Lycium ruthenicum is an important species of eco-economic forests. Herein, treatment of ‘starvation and drying combined with 30 μM AgNO3’ (SDCAg+) removed serious hyperhydricity of L. ruthenicum buds regenerated from its green-inflorescence-explants, and then gene expression, metabolites of various phytohormones, chloroplasts, chlorophyll (Chl) and total soluble proteins of the hyperhydric and dehyperhydric leaves were compared and analyzed. The results suggested that the SDCAg+ treatment might remove hyperhydricity of L. ruthenicum through: reducing water uptake; increasing water loss; up-regulating the expression of chloroplast-ribosomal-protein genes from nuclear genome; down-regulating the expression of cytoplasmic-ribosomal-protein genes; up-regulating the synthesis of the total soluble proteins; restoring the lamellar structure of chloroplast grana and matrix; improving Chl synthesis and reducing Chl metabolism; increasing expression of light-harvesting Chl protein complex genes and content of Chla and b; up-regulating both photosynthesis and starch and sucrose metabolism KEGG pathways; up-regulating abscisic acid, salicylic acid and their signaling; down-regulating cytokinin, jasmonic acid, jasmonoyl-l-isoleucine and their signaling. Also, the above events interact to form a regulatory network of dehyperhydricity by SDCAg+ treatment. Overall, the study indicated key genes/pathways and physiological/subcellular changes involved in dehyperhydricity and then established a dehyperhydric mechanism model of L. ruthenicum. This not only proposed clues for preventing or removing hyperhydricity but also laid foundations for molecular breeding of L. ruthenicum and other species.

Funder

Scientific Research Fund of Liaoning Provincial Education Department

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3