Leaf water potential-dependent leaflet closure contributes to legume leaves cool down and drought avoidance under diurnal drought stress

Author:

Feng Xiangyan123ORCID,Zhong Lingfei4,Tian Quanyan12,Zhao Wenzhi12

Affiliation:

1. Linze Inland River Basin Research Station , Key Laboratory of Ecohydrology of Inland River Basin, , Lanzhou 730000, China

2. Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences , Key Laboratory of Ecohydrology of Inland River Basin, , Lanzhou 730000, China

3. University of Chinese Academy of Sciences , Beijing 100029, China

4. College of Geography and Environment Science, Northwest Normal University , Lanzhou 730070, China

Abstract

Abstract Efficient thermoregulation under diurnal drought stress protects leaves from photosystem damage and water supply–demand imbalance, yet the cool effect and drought avoidance by leaflet closure have not been well understood. We investigated the cool effect and the drought avoidance of leaflet closure in legume species that survived in the semi-arid region facing seasonal and diurnal drought stress. The results showed that leaflet closure effectively cooled down legume leaves through a reduction of projected leaflet area and the cosine of the angle of incidence (cos i). The leaflet closure was strongly dependent on leaf water potential (Ψleaf). In addition, by characterizing the sequence of key leaf drought response traits, we found leaflet closure occurred after stomatal closure and reduced transpiration rate but before hydraulic failure and turgor loss point (Ψtlp). The meta-analysis also showed that the leaflet closure and cos i decreased after the stomatal conductance declined but before midday. These results imply that Ψleaf-dependent leaflet closure as an alternative to transpiration for leaflet cooling down and as a protective drought avoidance strategy assisting sessile legume plants survival under drought stress.

Funder

Key Research Program of Frontier Sciences

Strategic Priority Research Program

Chinese Academy of Sciences

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3