Amplifying feedback loop between growth and wood anatomical characteristics of Fraxinus excelsior explains size-related susceptibility to ash dieback

Author:

Klesse Stefan1ORCID,von Arx Georg2ORCID,Gossner Martin M13ORCID,Hug Christian2,Rigling Andreas2,Queloz Valentin1

Affiliation:

1. Forest Health and Biotic Interactions Department Swiss Federal Research Institute for Forest, Snow, and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland

2. Forest Dynamics Department, Swiss Federal Research Institute for Forest, Snow, and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland

3. ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, Universitätstrasse 8-22, 8092 Zurich, Switzerland

Abstract

Abstract Since the 1990s the invasive fungus Hymenoscyphus fraxineus has caused severe crown dieback and high mortality rates in Fraxinus excelsior in Europe. In addition to a strong genetic control of tolerance to the fungus, previous studies have found landscape heterogeneity to be an additional driver of variability in the severity of dieback symptoms. However, apart from climatic conditions related to heat and humidity influencing fungal infection success, the mechanistic understanding of why smaller or slower-growing trees are more susceptible to dieback remains less well understood. Here, we analyzed three stands in Switzerland with a unique setting of 8 years of data availability of intra-annual diameter growth and annual crown health assessments. We complemented this by ring width and quantitative wood anatomical measurements extending back before the monitoring started to investigate if wood anatomical adjustments can help better explain the size-related dieback phenomenon. We found that slower-growing trees or trees with smaller crowns already before the arrival of the fungus were more susceptible to dieback and mortality. Defoliation directly reduced growth as well as maximum earlywood vessel size, and the positive relationship between vessel size and growth rate caused a positive feedback amplifying and accelerating crown dieback. Measured non-structural carbohydrate (NSC) concentrations in the outermost five rings did not significantly vary between healthy and weakened trees, which translate into large differences in absolute available amount of NSCs. Thus, we hypothesize that a lack of NSCs (mainly sugars) leads to lower turgor pressure and smaller earlywood vessels in the following year. This might impede efficient water transport and photosynthesis, and be responsible for stronger symptoms of dieback and higher mortality rates in smaller and slower-growing trees.

Funder

SwissForestLab

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3