Axial conduit widening in woody species: a still neglected anatomical pattern

Author:

Anfodillo Tommaso,Petit Giai,Crivellaro Alan1

Affiliation:

1. 1Università degli Studi di Padova, Dipartimento Territorio e Sistemi Agro Forestali, Viale dell’Università 16, 35020 Legnaro (PD), Italy

Abstract

Within a tree the lumen of the xylem conduits varies widely (by at least 1 order of magnitude). Transversally in the stem conduits are smaller close to the pith and larger in the outermost rings. Axially (i.e. from petioles to roots) conduits widen from the stem apex downwards in the same tree ring. This axial variation is proposed as being the most efficient anatomical adjustment for stabilizing hydraulic path-length resistance with the progressive growth in height. The hydrodynamic (i.e. physical) constraint shapes the whole xylem conduits column in a very similar way in different species and environments. Our aim is to provide experimental evidence that the axial conduit widening is an ineluctable feature of the vascular system in plants. If evolution has favoured efficient distribution networks (i.e. total resistance is tree-size independent) the axial conduit widening can be predicted downwards along the stem. Indeed, in order to compensate for the increase in path length with growth in height the conduit size should scale as a power function of tree height with an exponent higher than 0.2. Similarly, this approach could be applied in branches and roots but due to the different lengths of the path roots-leaves the patterns of axial variations of conduit size might slightly deviate from the general widening trend. Finally, we emphasize the importance of sampling standardization with respect to tree height for correctly comparing the anatomical characteristics of different individuals.

Publisher

Brill

Subject

Forestry,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3