Ten principles for data sharing and commercialization

Author:

Cole Curtis L1,Sengupta Soumitra2,Rossetti (née Collins) Sarah2,Vawdrey David K3,Halaas Michael4,Maddox Thomas M5,Gordon Geoff6,Dave Trushna7,Payne Philip R O8,Williams Andrew E9,Estrin Deborah10

Affiliation:

1. Healthcare Policy and Research, Cornell University, New York, New York, USA

2. Columbia University Irving Medical Center, New York, New York, USA

3. Geisinger Health System, Danville, Pennsylvania, USA

4. Stanford University School of Medicine, Palo Alto, California, USA

5. Healthcare Innovation Lab, BJC HealthCare/Washington University School of Medicine, St. Louis, Missouri, USA

6. Informatics Institute, University of Alabama-Birmingham, Birmingham, Alabama, USA

7. IT Business Solutions, NewYork-Presbyterian Hospital, New York, New York, USA

8. Institute for Informatics (I2), Washington University School of Medicine, St. Louis, Missouri, USA

9. Tufts Medical Center, Boston, Massachusetts, USA

10. Cornell Tech, Cornell University, New York, New York, USA

Abstract

Abstract Digital medical records have enabled us to employ clinical data in many new and innovative ways. However, these advances have brought with them a complex set of demands for healthcare institutions regarding data sharing with topics such as data ownership, the loss of privacy, and the protection of the intellectual property. The lack of clear guidance from government entities often creates conflicting messages about data policy, leaving institutions to develop guidelines themselves. Through discussions with multiple stakeholders at various institutions, we have generated a set of guidelines with 10 key principles to guide the responsible and appropriate use and sharing of clinical data for the purposes of care and discovery. Industry, universities, and healthcare institutions can build upon these guidelines toward creating a responsible, ethical, and practical response to data sharing.

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Reference6 articles.

1. Re-identification risk in HIPAA de-identified datasets: The MVA attack;Janmey;AMIA Annu Symp Proc,2018

2. Use and understanding of anonymization and de-identification in the biomedical literature: scoping review;Chevrier;J Med Internet Res,2019

3. Google’s ‘Project Nightingale’ Gathers Personal Health Data on Millions of Americans;Copeland;Wall Street Journal,2019

4. Algorithmic transparency in the news media;Diakopoulos;Digital Journalism,2017

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3