Integrating economic considerations into cutpoint selection may help align clinical decision support toward value-based healthcare

Author:

Parsons Rex1ORCID,Blythe Robin1ORCID,Cramb Susanna M12,McPhail Steven M13

Affiliation:

1. Australian Centre for Health Services Innovation and Centre for Healthcare Transformation, School of Public Health and Social Work, Faculty of Health, Queensland University of Technology , Kelvin Grove, Australia

2. Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Metro North Health , Herston, Australia

3. Digital Health and Informatics, Metro South Health , Woolloongabba, Australia

Abstract

AbstractObjectiveClinical prediction models providing binary categorizations for clinical decision support require the selection of a probability threshold, or “cutpoint,” to classify individuals. Existing cutpoint selection approaches typically optimize test-specific metrics, including sensitivity and specificity, but overlook the consequences of correct or incorrect classification. We introduce a new cutpoint selection approach considering downstream consequences using net monetary benefit (NMB) and through simulations compared it with alternative approaches in 2 use-cases: (i) preventing intensive care unit readmission and (ii) preventing inpatient falls.Materials and methodsParameter estimates for costs and effectiveness from prior studies were included in Monte Carlo simulations. For each use-case, we simulated the expected NMB resulting from the model-guided decision using a range of cutpoint selection approaches, including our new value-optimizing approach. Sensitivity analyses applied alternative event rates, model discrimination, and calibration performance.ResultsThe proposed approach that considered expected downstream consequences was frequently NMB-maximizing compared with other methods. Sensitivity analysis demonstrated that it was or closely tracked the optimal strategy under a range of scenarios. Under scenarios of relatively low event rates and discrimination that may be considered realistic for intensive care (prevalence = 0.025, area under the receiver operating characteristic curve [AUC] = 0.70) and falls (prevalence = 0.036, AUC = 0.70), our proposed cutpoint method was either the best or similar to the best of the compared methods regarding NMB, and was robust to model miscalibration.DiscussionOur results highlight the potential value of conditioning cutpoints on the implementation setting, particularly for rare and costly events, which are often the target of prediction model development research.ConclusionsThis study proposes a cutpoint selection method that may optimize clinical decision support systems toward value-based care.

Funder

Digital Health Cooperative Research Centre

Commonwealth’s Cooperative Research Centres

NHMRC

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3