National Veterans Health Administration inpatient risk stratification models for hospital-acquired acute kidney injury

Author:

Cronin Robert M123,VanHouten Jacob P24,Siew Edward D5,Eden Svetlana K4,Fihn Stephan D67,Nielson Christopher D68,Peterson Josh F2,Baker Clifton R6,Ikizler T Alp5,Speroff Theodore134,Matheny Michael E1234

Affiliation:

1. Geriatric Research Education Clinical Center, Tennessee Valley Health System, Veterans Health Administration, Nashville, TN, USA

2. Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA

3. Division of General Internal Medicine and Public Health, Vanderbilt University School of Medicine, Nashville, TN, USA

4. Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, USA

5. Division of Nephrology, Vanderbilt University School of Medicine, Nashville, TN, USA

6. Office of Analytics and Business Intelligence, VA Central Office, Veterans Health Administration, Seattle, WA, USA

7. Division of General Internal Medicine, University of Washington, Seattle, WA, USA

8. Division of Pulmonary Medicine and Critical Care, University of Nevada, Reno, NV, USA

Abstract

Abstract Objective Hospital-acquired acute kidney injury (HA-AKI) is a potentially preventable cause of morbidity and mortality. Identifying high-risk patients prior to the onset of kidney injury is a key step towards AKI prevention. Materials and Methods A national retrospective cohort of 1,620,898 patient hospitalizations from 116 Veterans Affairs hospitals was assembled from electronic health record (EHR) data collected from 2003 to 2012. HA-AKI was defined at stage 1+, stage 2+, and dialysis. EHR-based predictors were identified through logistic regression, least absolute shrinkage and selection operator (lasso) regression, and random forests, and pair-wise comparisons between each were made. Calibration and discrimination metrics were calculated using 50 bootstrap iterations. In the final models, we report odds ratios, 95% confidence intervals, and importance rankings for predictor variables to evaluate their significance. Results The area under the receiver operating characteristic curve (AUC) for the different model outcomes ranged from 0.746 to 0.758 in stage 1+, 0.714 to 0.720 in stage 2+, and 0.823 to 0.825 in dialysis. Logistic regression had the best AUC in stage 1+ and dialysis. Random forests had the best AUC in stage 2+ but the least favorable calibration plots. Multiple risk factors were significant in our models, including some nonsteroidal anti-inflammatory drugs, blood pressure medications, antibiotics, and intravenous fluids given during the first 48 h of admission. Conclusions This study demonstrated that, although all the models tested had good discrimination, performance characteristics varied between methods, and the random forests models did not calibrate as well as the lasso or logistic regression models. In addition, novel modifiable risk factors were explored and found to be significant.

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Reference76 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3