Machine learning models for predicting acute kidney injury: a systematic review and critical appraisal

Author:

Vagliano Iacopo1ORCID,Chesnaye Nicholas C2,Leopold Jan Hendrik1,Jager Kitty J2,Abu-Hanna Ameen1,Schut Martijn C1

Affiliation:

1. Deptartment of Medical Informatics, Amsterdam UMC, University of Amsterdam, Amsterdam, Amsterdam Public Health Research Institute , Amsterdam , The Netherlands

2. ERA Registry, Department of Medical Informatics, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research Institute , Amsterdam , The Netherlands

Abstract

ABSTRACT Background The number of studies applying machine learning (ML) to predict acute kidney injury (AKI) has grown steadily over the past decade. We assess and critically appraise the state of the art in ML models for AKI prediction, considering performance, methodological soundness, and applicability. Methods We searched PubMed and ArXiv, extracted data, and critically appraised studies based on the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD), Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies (CHARMS), and Prediction Model Risk of Bias Assessment Tool (PROBAST) guidelines. Results Forty-six studies from 3166 titles were included. Thirty-eight studies developed a model, five developed and externally validated one, and three studies externally validated one. Flexible ML methods were used more often than deep learning, although the latter was common with temporal variables and text as predictors. Predictive performance showed an area under receiver operating curves ranging from 0.49 to 0.99. Our critical appraisal identified a high risk of bias in 39 studies. Some studies lacked internal validation, whereas external validation and interpretability of results were rarely considered. Fifteen studies focused on AKI prediction in the intensive care setting, and the US-derived Medical Information Mart for Intensive Care (MIMIC) data set was commonly used. Reproducibility was limited as data and code were usually unavailable. Conclusions Flexible ML methods are popular for the prediction of AKI, although more complex models based on deep learning are emerging. Our critical appraisal identified a high risk of bias in most models: Studies should use calibration measures and external validation more often, improve model interpretability, and share data and code to improve reproducibility.

Publisher

Oxford University Press (OUP)

Subject

Transplantation,Nephrology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3