Can Unified Medical Language System–based semantic representation improve automated identification of patient safety incident reports by type and severity?

Author:

Wang Ying,Coiera Enrico,Magrabi FarahORCID

Abstract

Abstract Objective The study sought to evaluate the feasibility of using Unified Medical Language System (UMLS) semantic features for automated identification of reports about patient safety incidents by type and severity. Materials and Methods Binary support vector machine (SVM) classifier ensembles were trained and validated using balanced datasets of critical incident report texts (n_type = 2860, n_severity = 1160) collected from a state-wide reporting system. Generalizability was evaluated on different and independent hospital-level reporting system. Concepts were extracted from report narratives using the UMLS Metathesaurus, and their relevance and frequency were used as semantic features. Performance was evaluated by F-score, Hamming loss, and exact match score and was compared with SVM ensembles using bag-of-words (BOW) features on 3 testing datasets (type/severity: n_benchmark = 286/116, n_original = 444/4837, n_independent =6000/5950). Results SVMs using semantic features met or outperformed those based on BOW features to identify 10 different incident types (F-score [semantics/BOW]: benchmark = 82.6%/69.4%; original = 77.9%/68.8%; independent = 78.0%/67.4%) and extreme-risk events (F-score [semantics/BOW]: benchmark = 87.3%/87.3%; original = 25.5%/19.8%; independent = 49.6%/52.7%). For incident type, the exact match score for semantic classifiers was consistently higher than BOW across all test datasets (exact match [semantics/BOW]: benchmark = 48.9%/39.9%; original = 57.9%/44.4%; independent = 59.5%/34.9%). Discussion BOW representations are not ideal for the automated identification of incident reports because they do not account for text semantics. UMLS semantic representations are likely to better capture information in report narratives, and thus may explain their superior performance. Conclusions UMLS-based semantic classifiers were effective in identifying incidents by type and extreme-risk events, providing better generalizability than classifiers using BOW.

Funder

Australian National Health and Medical Research Council

Centre for Research Excellence in Digital Health

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3