DeepADEMiner: a deep learning pharmacovigilance pipeline for extraction and normalization of adverse drug event mentions on Twitter
Author:
Affiliation:
1. DBEI, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
2. Kazan Federal University, Kazan, Russia
3. LIACS, Leiden University, Leiden, Netherlands
Abstract
Funder
University of Pennsylvania was supported by the National Institutes of Health (NIH) National Library of Medicine
Kazan Federal University on BERT-based models and manuscript was supported by the Russian Science Foundation
Publisher
Oxford University Press (OUP)
Subject
Health Informatics
Link
http://academic.oup.com/jamia/article-pdf/28/10/2184/40408928/ocab114.pdf
Reference29 articles.
1. Adverse drug reactions: definitions, diagnosis, and management;Edwards;Lancet,2000
2. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features;Nikfarjam;J Am Med Inform Assoc,2015
3. Utilizing social media data for pharmacovigilance: a review;Sarker;J Biomed Inform,2015
4. Social media and pharmacovigilance: a review of the opportunities and challenges;Sloane;Br J Clin Pharmacol,2015
5. Utility of social media and crowd-intelligence data for pharmacovigilance: a scoping review;Tricco;BMC Med Inform Decis Mak,2018
Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Assessing domain adaptation in adverse drug event extraction on real-world breast cancer records;International Journal of Medical Informatics;2024-11
2. Synergizing blockchain and artificial intelligence to enhance healthcare;Drug Discovery Today;2024-09
3. Which Social Media Platforms Provide the Most Informative Data for Monitoring the Opioid Crisis?;2024-07-07
4. Monitoring Adverse Drug Events in Web Forums: Evaluation of a Pipeline and Use Case Study;Journal of Medical Internet Research;2024-06-18
5. Automated System to Capture Patient Symptoms from Multi-type Japanese Clinical Texts: Natural Language Processing Approach (Preprint);JMIR Medical Informatics;2024-03-29
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3