DeepADEMiner: a deep learning pharmacovigilance pipeline for extraction and normalization of adverse drug event mentions on Twitter

Author:

Magge Arjun1,Tutubalina Elena2,Miftahutdinov Zulfat2,Alimova Ilseyar2,Dirkson Anne3,Verberne Suzan3,Weissenbacher Davy1,Gonzalez-Hernandez Graciela1

Affiliation:

1. DBEI, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA

2. Kazan Federal University, Kazan, Russia

3. LIACS, Leiden University, Leiden, Netherlands

Abstract

Abstract Objective Research on pharmacovigilance from social media data has focused on mining adverse drug events (ADEs) using annotated datasets, with publications generally focusing on 1 of 3 tasks: ADE classification, named entity recognition for identifying the span of ADE mentions, and ADE mention normalization to standardized terminologies. While the common goal of such systems is to detect ADE signals that can be used to inform public policy, it has been impeded largely by limited end-to-end solutions for large-scale analysis of social media reports for different drugs. Materials and Methods We present a dataset for training and evaluation of ADE pipelines where the ADE distribution is closer to the average ‘natural balance’ with ADEs present in about 7% of the tweets. The deep learning architecture involves an ADE extraction pipeline with individual components for all 3 tasks. Results The system presented achieved state-of-the-art performance on comparable datasets and scored a classification performance of F1 = 0.63, span extraction performance of F1 = 0.44 and an end-to-end entity resolution performance of F1 = 0.34 on the presented dataset. Discussion The performance of the models continues to highlight multiple challenges when deploying pharmacovigilance systems that use social media data. We discuss the implications of such models in the downstream tasks of signal detection and suggest future enhancements. Conclusion Mining ADEs from Twitter posts using a pipeline architecture requires the different components to be trained and tuned based on input data imbalance in order to ensure optimal performance on the end-to-end resolution task.

Funder

University of Pennsylvania was supported by the National Institutes of Health (NIH) National Library of Medicine

Kazan Federal University on BERT-based models and manuscript was supported by the Russian Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3