An investigation of single-domain and multidomain medication and adverse drug event relation extraction from electronic health record notes using advanced deep learning models

Author:

Li Fei12,Yu Hong12

Affiliation:

1. Department of Computer Science, University of Massachusetts Lowell, Lowell, Massachusetts, USA

2. Center for Healthcare Organization and Implementation Research, Bedford Veterans Affairs Medical Center, Bedford, Massachusetts, USA

Abstract

Abstract Objective We aim to evaluate the effectiveness of advanced deep learning models (eg, capsule network [CapNet], adversarial training [ADV]) for single-domain and multidomain relation extraction from electronic health record (EHR) notes. Materials and Methods We built multiple deep learning models with increased complexity, namely a multilayer perceptron (MLP) model and a CapNet model for single-domain relation extraction and fully shared (FS), shared-private (SP), and adversarial training (ADV) modes for multidomain relation extraction. Our models were evaluated in 2 ways: first, we compared our models using our expert-annotated cancer (the MADE1.0 corpus) and cardio corpora; second, we compared our models with the systems in the MADE1.0 and i2b2 challenges. Results Multidomain models outperform single-domain models by 0.7%-1.4% in F1 (t test P < .05), but the results of FS, SP, and ADV modes are mixed. Our results show that the MLP model generally outperforms the CapNet model by 0.1%-1.0% in F1. In the comparisons with other systems, the CapNet model achieves the state-of-the-art result (87.2% in F1) in the cancer corpus and the MLP model generally outperforms MedEx in the cancer, cardiovascular diseases, and i2b2 corpora. Conclusions Our MLP or CapNet model generally outperforms other state-of-the-art systems in medication and adverse drug event relation extraction. Multidomain models perform better than single-domain models. However, neither the SP nor the ADV mode can always outperform the FS mode significantly. Moreover, the CapNet model is not superior to the MLP model for our corpora.

Funder

National Institutes of Health

Health Services Research

U.S. Department of Veterans Affairs Investigator-Initiated Research

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3