Affiliation:
1. Department of Computer Science, University of Massachusetts Lowell, Lowell, Massachusetts, USA
2. Center for Healthcare Organization and Implementation Research, Bedford Veterans Affairs Medical Center, Bedford, Massachusetts, USA
Abstract
Abstract
Objective
We aim to evaluate the effectiveness of advanced deep learning models (eg, capsule network [CapNet], adversarial training [ADV]) for single-domain and multidomain relation extraction from electronic health record (EHR) notes.
Materials and Methods
We built multiple deep learning models with increased complexity, namely a multilayer perceptron (MLP) model and a CapNet model for single-domain relation extraction and fully shared (FS), shared-private (SP), and adversarial training (ADV) modes for multidomain relation extraction. Our models were evaluated in 2 ways: first, we compared our models using our expert-annotated cancer (the MADE1.0 corpus) and cardio corpora; second, we compared our models with the systems in the MADE1.0 and i2b2 challenges.
Results
Multidomain models outperform single-domain models by 0.7%-1.4% in F1 (t test P < .05), but the results of FS, SP, and ADV modes are mixed. Our results show that the MLP model generally outperforms the CapNet model by 0.1%-1.0% in F1. In the comparisons with other systems, the CapNet model achieves the state-of-the-art result (87.2% in F1) in the cancer corpus and the MLP model generally outperforms MedEx in the cancer, cardiovascular diseases, and i2b2 corpora.
Conclusions
Our MLP or CapNet model generally outperforms other state-of-the-art systems in medication and adverse drug event relation extraction. Multidomain models perform better than single-domain models. However, neither the SP nor the ADV mode can always outperform the FS mode significantly. Moreover, the CapNet model is not superior to the MLP model for our corpora.
Funder
National Institutes of Health
Health Services Research
U.S. Department of Veterans Affairs Investigator-Initiated Research
Publisher
Oxford University Press (OUP)
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献