Utilizing patient geographic information system data to plan telemedicine service locations

Author:

Soares Neelkamal1,Dewalle Joseph2,Marsh Ben3

Affiliation:

1. Department of Pediatric and Adolescent Medicine, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA

2. Environmental Health Institute, Center for Health Research, Geisinger Health System, Danville, PA, USA

3. Department of Geography and Program in Environmental Studies, Bucknell University, Lewisburg, PA, USA

Abstract

Abstract Objective: To understand potential utilization of clinical services at a rural integrated health care system by generating optimal groups of telemedicine locations from electronic health record (EHR) data using geographic information systems (GISs). Methods: This retrospective study extracted nonidentifiable grouped data of patients over a 2-year period from the EHR, including geomasked locations. Spatially optimal groupings were created using available telemedicine sites by calculating patients’ average travel distance (ATD) to the closest clinic site. Results: A total of 4027 visits by 2049 unique patients were analyzed. The best travel distances for site groupings of 3, 4, 5, or 6 site locations were ranked based on increasing ATD. Each one-site increase in the number of available telemedicine sites decreased minimum ATD by about 8%. For a given group size, the best groupings were very similar in minimum travel distance. There were significant differences in predicted patient load imbalance between otherwise similar groupings. A majority of the best site groupings used the same small number of sites, and urban sites were heavily used. Discussion: With EHR geospatial data at an individual patient level, we can model potential telemedicine sites for specialty access in a rural geographic area. Relatively few sites could serve most of the population. Direct access to patient GIS data from an EHR provides direct knowledge of the client base compared to methods that allocate aggregated data. Conclusion: Geospatial data and methods can assist health care location planning, generating data about load, load balance, and spatial accessibility.

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3